
 PLC836 Basic Instruction Set

 3-1

3. PLC 836 Basic Instruction Set

A language PLC836 is destined for effective programming of system CNC836 interface. It has following
advantages against assembler programming: A coding time as well as coding error probability is significantly
decreased, utilization of microprocessor time is optimized and it conducts to keep recommended program
structure. A language uses exclusively symbolic addresses even for single memory bit addressing. A source
program code has a similar structure as a language used for programmable controllers family NS900
manufactured by TESLA Kolin.

3.1 Writing a Source Code

The source code can be written in any ASCII text editor. This manual is not a textbook for interface
programming. Hence only necessary information for source code writing are introduced. Programming is
provided in mnemonic code. For code writing are valid similar rules as for writing an assembler source code

Source code format:

a) Label
 It is optional and determines a symbolic memory location where a variable is stored, or to which a
program jump is provided. The label can content max 31 alphanumerical characters including 3 special
characters:

_ Underline character
? Question mark
@ "At sign"

A first character must not be numeric. The label must end with colon. The label can be placed on
separate line and relates to closest next line which contents instruction code, variable, or memory
allocation.

b) Instructions
It is a mnemonic symbol of appropriate Operational Code. As instructions only instructions mentioned
next in this manual are allowed. Except these it is possible to use 8086-microprocessor instruction set
but using it is not necessary for writing an interface program.

c) Operand
The instructions can be without operand (e.g. instruction BCD), or mostly with single operand (e.g.
LDR ALFA). Some instructions can have double operands (e.g.. INP port,addr.) separated by commas.

PLC

 3-2

d) Comment
A text introduced by semicolon is considered as commentary and is ignored. The comment can be on
separate line or together with instruction code.

Example:
 ; This is a comment
PAM12: LDR ALFA ; this is a comment

3.2 Working Registers of PLC836 Language

Instructions of PLC836 language use following registers:

a) The one bit register called Register of Logical Operations, (RLO). Actually it is bit with weight
40Hex of microprocessor AH register.

b) The sixteen-bit register called Data Register , (DR). Some instructions can work with extended 32
bit DR.
Actually it is microprocessor CX register. I extended mode (32-bit) it is register CX and BP.

c) Stack - 8 cells type WORD.

If only instructions of PLC 836 language are used the actual representation of the registers is not important for
programmer. Working with actual registers is necessary only when some parts of the program are programmed
in 8086 assembler.

Changing value in register RLO does not affect content of register DR and vice versa. The PLC836 Language
automatically recognizes if Byte or Word approach to DR register or memory must be used.

3.3 Memory Declaration

The PLC836 language can work with any address in its symbolic form. The symbolic addressing can be used
either for bit, eight-bit (Byte type) or sixteen-bit (Word type) RAM memory cells. The symbolic address is
defined as a label with maximum 31 alphanumeric characters. (A length of the label is not restricted but only
first 31 characters are significant). A first character must be a letter. The label must be different from predefined
keywords. A list of keywords is in Appendix.
To assign the label to certain memory location can be provided in two ways. In case of address declaration in
program memory location (EPROM) or declaration eight-bit or sixteen-bit word in RAM memory it is enough
to end the label with a colon. Then the address relates to instruction next to colon.

Example:
In the program, which consists of instructions 1 to 5, assign the address of instructions 2 and 3 by labels ALFA
and BETA.
 INSTRUCTION 1
ALFA: INSTRUCTION 2
BETA: INSTRUCTION 3
 INSTRUCTION 4
 INSTRUCTION 5

 PLC836 Basic Instruction Set

 3-3

3.4 Bit definition, Byte Word and Constant

 For symbolic definition of each bit in the RAM memory is destined a special instruction DFM. A one DFM
instruction defines always in the place of its record one memory byte (eight bits). A whole byte can be named via
prefix symbol, which must end with a colon. Such defined byte permits bite as well as byte access. The symbols,
which are after statement DFM, declare individual bits of a defined byte. A first symbol belongs to bit d0,
second to bit d1 and eventually the eight symbol belongs to bit d7. Commas must separate the symbols. In case
that we do not want define some bits an appropriate symbol can be omitted. The commas can not be omitted in
any case!

Each inputs and outputs of peripheral circuits are scanned and loaded via octuples. To facilitate PLC program we
shall consider this inputs and outputs only this way. At the beginning of the program all RAM inputs are read via
special instruction and at the end of the program dedicated RAM location shall be load to outputs. All outputs
res. inputs can be declared and treated in a similar way as the RAM memory bits.

The instruction DS is destined for variable definition and memory initialization. By operand a length of
dedicated memory type BYTE is declared. The instruction DS 1 with a label of variable declares this variable as
BYTE and instruction DS2 declares this variable as WORD.

Instruction EQUI defines constants used in a program. The first parameter is name of constant (symbolic); the
second one is its value the value can be in following forms:

1. Decimal e.g. 123, 54213
2. Hexadecimal e.g. 0F8H, 15H
3. Character e.g. 'A', '8'

Instruction DFM

operation bit definition in memory

syntax DFM [bit0],[bit1],,,,,,[bit7]

Instruction DS 1
 DS 2
 DS n

operation DS 1 memory declaration length 1 byte
 DS 2 memory declaration length 1 word

 DS n memory declaration length n byte

syntax DS 1
 DS 2
 DS n

Instruction EQUI

Operation constant definition

syntax EQUI const, value

PLC

 3-4

Example:
In the RAM memory define byte GAMA and its single bits d0 to d7 as symbols GAMA0 to GAMA7. On
address DELTA define bit d= DELTAM, bit d2= DELTAG and bit d7=DELTAT.

GAMA: DFM G0, G1, G2, G3, G4, G5, G6, and G7
DELTA: DFM DELTAM,DELTAG,,,,,DELTAT

Example:
Define length 1 byte for variable ALFA
Define length 2 byte for variable BETA
Define field of length 30byte for variable GAMA
Define a constant DELTA with value 1000

ALFA: DS 1
BETA: DS 2
GAMA: DS 30
 EQUI DELTA, 1000

3.5 Logical operations with memory bits and RLO

Instruction LDR loads memory bit to register RLO

An operand in instruction LDR is obligatory. This operand is a symbolic name of RAM memory bit, which is
defined by instruction DFM. If symbolic name is without sign or with “+” sign, the appropriate bit is directly
loaded. If a minus signs “-“ prefixed the name, the negative value of appropriate bit is loaded.

The more complex bit addressing: (compiler version 5.039 and higher)
In the case of loading bit from other memory location then is defined for this bit a memory location separated by
comma is prefixed to bit’s name. Instead of memory address is possible to use a name of there defined bit, or is
possible to use indexing (via BX) or structure items. It gives us a possibility to work with a large bit field. Also
is possible to use an offset for loading bit from an address other then is defined for this bit. For example loading
a bit from defined address + 12 can be written as $+ ($ + 12), where character $ is used instead of bit’s name.
The complex way of bit addressing is possible to use for instructions LDR, LA, LO, LX and for instructions
WR, FL1 a FL, if VERINSTRU is set at least to V1.
This type of addressing is used when is necessary to load bit with appropriate weight from any memory location.
In the PLC program the universal bit’s names are declared (e.g. B0,B1,...,B7,) which are then used for an access
to any memory location.

Examples of bit addressing:
 DFM B0,B1,B2,B3,B4,B5,B6,B7 ; formal bit definition

 LDR ALFA ;loading bit ALFA from memory, where is

defined

Instruction LDR

Operation loading memory bit to RLO /LOAD RLO/

syntax LDR [-]bit
 LDR [-][adr.]bit more complex addressing
 LDR [-][$+xx.]bit

 PLC836 Basic Instruction Set

 3-5

 LDR BUN5.ALFA ;from a cell BUN5 bit is loaded from the same
position as original bit ALFA
 LDR BUN5.B4 ;loading 4.bit
(weight 10h) from cell BUN5
 LDR -(BUN5+3).ALFA ;loading bit negation from cell BUN5+3
 LDR BUN5[BX].ALFA ;using indexing (see chapter18)
 LDR -(BUN5[BX]-6).ALFA; other combination
 LDR (BUN5[BX]+PRVNI+2).ALFA ;PRVNI is scripture item
 LDR $+3.ALFA ;loading bit ALFA with memory offset 3

3.6 Stack and End-instructions

If two or more LDR instructions are written consecutively in the program without affecting RLO (memory
writing or conditional jump), a content of RLO is pushed into Stack before executing next LDR. It is possible to
work with those values via instructions LA , LO or LX without operand specifying. Using the Stack a bracket
operations can be easily programmed.

Equability Vyrovnanost of Stack is checked at the end of each module (see next) and at the end of each
Sequential Logical Unit. Sekvenční logický celek. The unequability of the Stack results in an error report in
initial compilation phase of TECHNOL compiler. The equability checking during program debugging can be
done via instruction CHECK (see description of auxiliary instructions).

Each logical expression that is programmed via instructions LDR, LA, LO and LX must end with so called end-
instruction. By this instruction a stack pointer is cleared and thus in next following LDR instruction RLO is not
stored in stack.

The end-instructions of PLC836 language are:
♦ WR
♦ JL0, JL1
♦ STO1
♦ FL1
♦ CONRD
♦ EX, EX0, EX1, BEX
♦ TEX0, TEX1
♦ TIM

Instructions LA
 LO
 LX

Operation LA logical AND with RLO /AND/
 LO logical OR with RLO /OR/
 LX exclusive OR with RLO /XOR/

Syntax LA

 LO
 LX

Syntax2 LA [-bit]
 LO [-bit]
 LX [-bit]
 LA,LO,LX [-][adr.]bit more complex addressing
 LA,LO,LX [-][$+xx.]bit

PLC

 3-6

The operand in LA, LO a LX instruction is optional. If used this operand is a symbolic name of RAM memory
bit defined by instruction DFM. If symbolic name is without sign or with sign “+” the direct value of appropriate
bit is loaded, when a sign” - “precedes symbolic name a negation of appropriate bit is loaded.

If two or more LDR instructions are written consecutively in the program without affecting RLO (memory
writing or conditional jump), a content of RLO is stored in Stack before executing next LDR. It is possible to
work with those values via instructions LA , LO or LX without operand specifying. Instruction LA provides
logical AND with last value stored in stack with RLO and stores result in RLO. In this same way instruction LO
provides logical OR and instruction LX logical XOR. Equability Vyrovnanost of Stack is checked at the end of
each module (see next) and at the end of each Sequential Logical Unit. Sekvenční logický celek. The
unequability of the Stack results in an error report in initial compilation phase of TECHNOL compiler.
 The more complex addressing is described in instruction LDR.

Instruction CA is without operand and provides a negation of RLO contents. If content of RLO is logical 1 by
instruction CA is changed to 0 and vice versa.

Example 3:
Symbolically define memory bits A1, A2. Depending on value of these bits load RLO according to expression:

RLO = A1 + A2

Solution a): LDR A1
 LDR A2
 LO

If instructions LA, LO or LX have an operand (symbolically assigned memory bit), the meaning of instruction is
following:

Instruction LA with operand provides logical AND of appropriate memory bit with RLO and the result is stored
in RLO. Similarly instruction LO provides logical OR and instruction LX logical XOR. Back to example 3 we
have other solution:

Solution b): LDR A1
 LO A2

Solution b) is equal to solution a) but program length is shortened.

With above mentioned instructions (LDR, LA, LO, LX, CA) is possible to program any logical expression. A
programming approach is showed in examples 4, 5, and 6.

Example:
Program logical expression (notice. <> is XOR function):

RLO = (ALFA <> BETA) + (GAMA <> DELTA)

 LDR ALFA

Instruction CA

Operation negation of RLO

syntax CA

 PLC836 Basic Instruction Set

 3-7

 LX BETA
LDR GAMA ;store RLO into stack and load bit GAMA

 LX DELTA
 LO ;Logical OR RLO with stack

Example:
Program logical expression:
 ---- ---- ---- ----
RLO = [(A1.A2.A3) + (B1.B2)] . (C2 + C3)

 LDR -A1

LA A2
 LA -A3
 LDR -B1 ;Store RLO to Stack and load negation of bit B1
 LA B2
 LO ;Logical OR RLO with Stack
 LDR C2 ;Store temporary result to Stack and load bit C2
 LO -C3
 LA ;Logical AND RLO with Stack

Example:
Program logical expression :
 ________ _______
RLO = A1.A2.A3 + B1.B2.B3

 LDR A1
 LA A2
 LA A3
 CA
 LDR B1

LA B2
LA B3
CA
LO

3.7 Writing Bits to Memory

Instruction WR writes content of RLO to dedicated bits of memory byte. The content of RLO a DR remains
unaffected. Instruction WR is End- instruction for logical expression.

An original syntax of WR instruction can have one or more (max. 8) operands (left for compatibility). These
operands are symbolic names of RAM memory bits that are defined per instruction DFM. If two or more
operands are used they must assign bits of the same memory byte.

Instruction WR

Operation writing contents of RLO to memory

syntax1 WR bit

Syntax2 WR <bit1 AND bit2 [AND bit3 ...]>

Syntax3 WR bit1 [,bit2 ...] for VERINSTRU WR_V1
 WR [adr.]bit more complex addressing
 WR [adr.]bit [,[adr2.]bit2 ...]
 WR [$+xx.]bit[,[$+yy.]bit2 ...]

PLC

 3-8

The bit’s names are separated by word AND and its list is in closed in sharp brackets " < >". In the case of one
symbolic name the brackets can be omitted.

The instruction WR exists also in a new modified version. The modification is provided per instruction
VERINSTRU. (See description of VERINSTRU instruction in 3.17 Auxiliary statements). The modification
permits using in instruction parameters more bit operands which on the contrary of original instruction may not
be located in the same byte. The operands are not closed in brackets but are separated by commas.

The more complex addressing is described in instruction LDR.

Instruction FL fills bits of dedicated byte with zeroes or ones independently on RLO content. The first operand
of FL instruction is value 0 or 1. The second operand contents a list of bits to be filled. The operands are
obligatory as an option is possible to set via third and fourth operand an opposite constant and bits to be loaded.
A content of RLO and DR remains unaffected.

The instruction WR exists also in a new modified version. The modification is provided per instruction
VERINSTRU. (See description of VERINSTRU instruction in 3.17 Auxiliary statements). The modification
permits using in instruction parameters more bit operands which on the contrary of original instruction may not
be located in the same byte. The operands are not closed in brackets but are separated by commas.

The more complex addressing is described in instruction LDR.

Instruction FL1 fills bits of dedicated byte by zeroes or ones only when value of RLO is 1. The first operand of
FL1 instruction is value 0 or 1. The second operand contents a list of bits to be filled. The operands are

Instruction FL

Operation setting memory bits

syntax1 FL 0,bit
 FL 1,bit

Syntax2 FL 0,<bit1 AND bit2 [AND bit3 ...]>

 FL 1,<bit1 AND bit2 [AND bit3 ...]>

Syntax3 FL 0,bit1 [,bit2 ...] pro VERINSTRU FL_V1

 FL 1,bit1 [,bit2 ...] pro VERINSTRU FL_V1
 FL 0,[adr.]bit more complex addressing
 FL 1,[adr.]bit [,[adr2.]bit2 ...]
 FL 0,[$+xx.]bit[,[$+yy.]bit2 ...]

instruction FL1

Operation conditional setting of memory bits

Syntax1 FL1 0,bit
 FL1 1,bit

Syntax2 FL1 0, <bit1 AND bit2 [AND bit3 ...]>

 FL1 1,<bit1 AND bit2 [AND bit3 ...]>

Syntax3 FL1 0,bit1 [,bit2 ...] for VERINSTRU FL1_V1

 FL1 1,bit1 [,bit2 ...] for VERINSTRU FL1_V1
 FL1 0,[adr.]bit more complex addressing
 FL1 1,[adr.]bit [,[adr2.]bit2 ...]
 FL1 0,[$+xx.]bit[,[$+yy.]bit2 ...]

 PLC836 Basic Instruction Set

 3-9

obligatory A content of RLO and DR remains unaffected. Instruction FL1 is the end-instruction for logical
expressions.

The instruction FL1 exists also in a new modified version. The modification is provided per instruction
VERINSTRU. (See description of VERINSTRU instruction in 3.17 Auxiliary statements). Starting from
TECHNOL 2.3 compiler version it is possible to use similar instruction FL0 The modification permits using in
instruction parameters more bit operands which on the contrary of original instruction may not be located in the
same byte. The operands are not closed in brackets but are separated by commas.

The more complex addressing is described in instruction LDR.

.

Two instructions and one label can compensate instruction FL1.
 JL0 OBSKOK
 FL 1,BIT is equivalent of: FL1 1,BIT
OBSKOK:

Example:
Load symbolic named memory bits PETR, IVAN, and JANA dependently to memory locations PAVEL and
EVA according to following rule:

PETR = IVAN = PAVEL + EVA
JANA = PAVEL . EVA

JMENA1: DFM PAVEL,EVA, , , , , ,
JMENA2: DFM PETR,IVANA,JANA, , , , , ,
 ...
 LDR PAVEL
 LO EVA
 WR <PETR AND IVAN>
 LDR PAVEL
 LA EVA
 WR JANA

Example:
Define following memory bits as follows:

A1, A2
B1, B2, B3, B4 in byte B

Fill the memory bits as follows:

0 into A1, B3, B4
1 into B1, B2, A2

 FL 0,A1
 FL 1,A2
 FL 1,<B1 AND B2>,0,<B3 AND B4>

PLC

 3-10

3.8 The Program Branching

All branching instructions, in other words a program jump, must have an address of next executed instruction (if
the jump conditions are performed) as an operand. If condition is not fulfilled the processor executes next
instruction (jump is not performed). This address is set by symbolic form, when dedicated symbol is defined via
colon in any program location.

Instruction JUM is an unconditional jump so the jump is always performed. Instruction JL0 is performed only
when RLO = 0. Instruction JL1 is performed only when RLO = 1. Instructions JL0 a JL1 are end-instructions for
logical expression.

Example:
Write via PLC 836 instructions following logical algorithm:

If A1 = A2, load 0 to B1 and B2 defined in the same memory byte.
If A1 . A2 = 1, load 1 to B3.

 LDR A1
 LX A2
 JL1 NAV1
 FL 0,<B1 AND B2>

 NAV1: LDR A1
 LA A2
 JL0 NAV2
 FL 1,B3
NAV2: ...
 ...
 ...

instructions JUM
 JL0
 JL1

operation JUM unconditional jump
 JL0 jump if RLO = 0
 JL1 jump if RLO = 1

syntax JUM adr
 JL0 adr
 JL1 adr

 PLC836 Basic Instruction Set

 3-11

3.9 Ways of Type Redefining for Data Variables

The PLC836 language works with operands in the data operations automatically according to their definition.
For example instruction LOD loads variable type BYTE, WORD or constant according to operand definition :

DEFINITION: OPERATION:
BUNKA1: DS 1 LOD BUNKA1 load BYTE to DR register
 upper part of DR register is zero
BUNKA2: DS 2 LOD BUNKA2 load WORD to DR register

EQUI KONST, 124 LOD KONST load constant 124 to DR
 register

Some instructions that work with DR register have possibility to redefine the type of data variable. The
following description deals with instructions LOD, STO, STO1, AD, SU, EQ, EQ1, LT, GT, LE, GE, RR, RL,
TM, TIM, TEX0, TEX1, MULB a DIVB.

The instructions can have optional prefix before variable name (TYPE.), which can redefine or amend of
variable type to :

♦ CNST
♦ BYTE
♦ WORD
♦ HIGH
♦ DWRD

Prefix is connected to operand via dot.

Instructions LOD, AD, SU, EQ, EQ1, LT, GT, LE, GE, RR, RL, MULB, DIVB can have a constant as an
operand which is not defined via instruction EQUI. In this case is placed before constant a value type:
"CNST.". It is supposed that constant has its length maximally 16 bits. The only exception is using prefix
CNST together with LOD instruction when from practical reasons the upper 16 bits of extended 32 bit DR
register are cleared.

Next are examples of using prefixes with instructions LOD. With other instruction prefixes work similarly but
acts according instruction operation.

Prefix "WORD." loads 2 sequential bytes to DR register regardless their definition:

Prefix "BYTE." loads one byte to DR register regardless its definition. In the case that a cell is defined as type
WORD, the lower byte is loaded to DR register:

DR
LOD WORD. BUN1

BUN1:
(BUN1+1)

LOD BYTE.BUN1

DR

high low BUN1:

PLC

 3-12

Prefix "HIGH." loads 1 byte to DR register regardless how is defined from the next memory location: In case
that a cell is defined as type WORD a high byte is loaded to DR register:

Prefix "DWRD." loads 4 sequential bytes to extended 32 bits DR register regardless of their definition. With
instructions that can work with double word (four byte) operands is prefix DWRD obligatory.

Example:
Write to X-axis measurement cell:

BUNKA: DS 4

LOD HIGH.BUN1

DR

high low BUN1:

LOD DWRD.BUN1

DR32

BUN1: BUN1
BUN1+1
BUN1+2
BUN1+3

 PLC836 Basic Instruction Set

 3-13

 CLI ;interrupt disabled
 LOD DWRD.B_POL ;load to extended DR register B_POL
 AD DWRD.B_INK ;add two words B_INK
 STI ;interrupt enabled
 STO DWRD.BUNKA ;write to BUNKA 32 bits

Example:
Using prefixes:

 LOD CNST.123 ;loads constant
 AD CNST.50h ;add 50 hexadecimal

 AD BYTE.ALFA ;add lower byte ALFA
 STO WORD.BETA ;write to BETA as WORD

Possibility of declaration and type redefining of data variables:

 DECLARATION possible type redefining
 BYTE WORD CNST BYTE. WORD. HIGH. CNST. DWRD.

LOD P P P P P P P P
STO, STO1 P P . P P P . P
TM P P . P P P . .
CU, CD P P
CUBCD P P P
AD, SU P P P P P P P P
MULB P . P P P P P P
DIVB P . P P P P P P
RR, RL P . P P . P P .
EQ, EQ1 P P P P P P P P
LT, GT P P P P P P P P
LE, GE P P P P P P P P
TIM P P . P P P . .
TEX0, TEX1 P P . P P P . .

3.10 Memory Writing and Reading from Data Register DR

Instruction LOD loads memory content of length byte or word (DWORD) or constant to data registers DR. The
memory address is set via instruction’s operand in its symbolic form. A constant must be defined via instruction
EQUI, or via prefix "CNST.". Using instruction with "CNST." prefix results loading also into extended part of
DR register Assigning of “-“sign loading a complementary value to register DR.

The type redefining is described in chapter 3.9.

instruction LOD

operation LOD loading byte, word, constant (or
DWORD) to DR

syntax LOD [-]adr
 LOD [-][TYPE.]adr
 LOD [-]TYPE.(adr+n)
 LOD [-]CNTS.konst
 TYPE = BYTE. WORD. HIGH. DWRD.

PLC

 3-14

Instruction STO permits writing of DR content to dedicated memory address with byte word (or DWORD using
prefix) length. The memory address is again set via instruction’s operand in its symbolic form.

The type redefining is described in chapter 3.9.

Instruction STO1 is analogous to instruction STO, but writing DR to memory is provided only when content of
RLO is logical 1 Instruction STO1 is introduced to maintain compatibility with automaton NS915. The
important difference is that STO1 is an end-instruction for logical expressions.
Starting from compiler’s TECHNOL 2.3 version it possible to use similar instruction STO0, when writing DR to
memory is provided only when content of RLO is logical 0

Instruction STO1 can be substituted via two instructions and one label:

 JL0 OBSKOK
STO BUNKA equal: STO1 BUNKA
OBSKOK:

Example:
Have symbolically defined RAM memory bytes:

ALFA, BETA, GAMA

A content of ALFA writes to BETA, constant 123H write to GAMA.

 EQUI K123, 123H

 LOD ALFA
 STO BETA
 LOD K123
 STO GAMA

The way of writing is the same also for length type Word.

Example:
Have following symbolically defined RAM memory bytes: ALFA type WORD and BETA type BYTE. Negative
contents of byte BETA write to lower byte of variable ALFA.

instruction STO

operation STO write DR in memory byte, word (or
DWORD)

syntax STO adr
 STO [TYPE.]adr
 STO TYPE.(adr+n)
 TYPE = BYTE. WORD. HIGH. DWRD.

instruction STO1

operation STO1 conditional writing DR to memory byte, word (or DWORD)

syntax Stoh adr
 STO1 [TYPE.]adr
 STO1 TYPE.(adr+n)
 TYPE = BYTE. WORD. HIGH. DWRD.

 PLC836 Basic Instruction Set

 3-15

 LOD -BETA
 STO BYTE.ALFA

Example:
Rewrite value of cell NASTAVENI to cell BUNKA, when expression ALFA*BETA is equal to 1:

 LDR ALFA
 LA BETA
 LOD NASTAVENI
 STO1 BUNKA

3.11 Realization of Time Dependent Functions

To get a most optimal processor’s run time and to define time for TM and TIM timers are the time functions
realized in special program segments. This program segment starts with instructions DFTM01, DFTM1,
DFTM10 or DFTM100 and ends with label "Konica".

Unlike the other PLC program parts which are activated every 20mS the special program segments are activated
in longer time intervals. Program segment defined by instruction DFTM01, is activated ("triggered by
processor") in intervals 0,1 sec. Program segment defined by instruction DFTM1, is activated in intervals 1 sec.
Program segment defined by instruction DFTM10, is activated every 10 sec and program segment defined by
instruction DFTM100 is activated every 100 sec.

In a standard system version the instructions DFTM01, DFTM1, DFTM10 and DFTM100can be used ones only.
System CNC8x9 – DUAL allow multiple using of DFTM instruction in all program segments.

When a system is powered on all counters (which are used for creating 0.1,1,10 and 100s intervals) are cleared.

instruction DFTM01
 DFTM1
 DFTM10
 DFTM100

operation DFTM01 program segment activated after 0,1 s
 DFTM1 program segment activated after1 s
 DFTM10 program segment activated after 10 s

DFTM100 program segment activated after 100 s

syntax DFTM01 konec

DFTM1 konec
DFTM10 konec
DFTM100 konec

instruction TM

operation timer dependent on DR, RLO a DFTM block

syntax TM citac
 TM [TYPE.]citac
 TM TYPE.(citac+n)
 TM
 TYPE = BYTE. WORD.

PLC

 3-16

Instruction TM works with register DR, and with register RLO. As an operand is necessary to set a symbolic
address of memory byte, which is destined for time counting (type BYTE or WORD).
For systems CNC8x9 –DUAL is this parameter optional. In that case a compiler defines itself automatically a
variable for dedicated counter. The time counting in instruction TM depends on the current program block
DFTM. If for example the instruction TM is in a program block which is defined via instruction DFTM10 (is
activated every 10 sec.) the setting time is in tens of seconds.

Instruction TM works as follows:

1) If RLO = 0, the dedicated counter is cleared. This ends instruction execution.

2) If RLO = 1, the content of dedicated counter is compared with content of data register DR.
a) If /ČÍTAČ/ >= DR, RLO is set to 1 and instruction ends.
b) If /ČÍTAČ/ < DR, RLO is set to 0 and counter is incremented by 1 (In block DFTM01 it
means time 0,1 sec. in block DFTM1 time 1 sec.).

Except instruction TM itself the counter block must content instructions for setting initial conditions for registers
DR and of course instructions for setting one or more memory cells according to result of instruction execution
(RLO).

Example:
Realize following time dependent function:
 If a value of bit ALFA is logical 1 for time longer than 0,4 sec. set to logical 1 bit GAMA. As a counter use
memory byte CITACA.

 EQUI DOBA,4

 DFTM01 NAV30
 ...
 LDR ALFA
 LOD DOBA
 TM CITACA
 FL1 1,GAMA
 ...
NAV30:

Example:
If logical AND of A1 a A2 is equal to zero for time longer than 5 sec. clear bit GAMA and clear memory cell
BYTE. As a counter use memory byte CITACB.

 DFTM1 NAV50
 ...
 LDR A1
 LA A2
 CA
 LOD CNST.5
 TM CITACB
 FL1 0,GAMA
 LOD CNTS.0

 PLC836 Basic Instruction Set

 3-17

 STO1 BYTE
 ...
NAV50:

Example:
If signal TLAK is for reconfigured time (REKONFIG+20) equal logical 1 set bit HAVAR and a memory cell
POCET to 67h:

 LDR TLAK
 LOD WORD.(REKONFIG+20)
 TM WORD.(CITAC+10)
 FL1 1,HAVAR
 LOD CNTS.67H
 STO1 POCET

Counter instructions are destined for realization of counting functions. If counting conditions are fulfilled (clear
input of a counter is on) the instruction Counter Up CU increments a memory cell defined in address part of
instruction CU. The counter is incremented when an input bit goes from logical 0 to logical 1 A counter stage is
concurrently compared with a value of data register DR (counter preset) . When a value of the counter and a
register DR is equal RLO register is set to log. 1, in other case to log.0. After finishing of instruction CU a
content of addressed counter is loaded to data register DR.

Instruction CU works with binary coded data in a range of byte or word. When reaching of preset value a content
and declaration of counters remain unaffected.

Instruction counter down CD works similarly but instead increment a decrement of a counter is provided.
Instruction CUBCD works as CU but in BCD code.

Example:
Count zero to one changes of input signal ALFA when disabling input BETA is in log. 1.

 LDR ALFA ;VSTUP

instruction CU
 CD
 CUBCD

operation CU Up Counter dependent on DR, RLO and block DFTM
 CD Down Counter dependent on DR, RLO and block DFTM
 CUBCD BCD Up Counter dependent on DR, RLO and block DFTM

syntax CU citac
 CD citac
 CUBCD citac

PLC

 3-18

 LA BETA ;BLOKOVÁNÍ
 LOD GAMA ;NAČTENÍ PŘEDVOLBY
 CU DELTA ;ČÍTAČ (BYTE, WORD)
 JL0 NAV1
 ...
NAV1:

Example:
Clear counter when reaches a preset value GAMA

 LDR ALFA ;VSTUP
 LOD GAMA ;NAČTENÍ PŘEDVOLBY
 CU DELTA ;ČÍTAČ (BYTE, WORD)
 LOD CNTS.0
 STO1 DELTA ;VYNULOVÁNÍ

3.12 Arithmetical instructions with operand and DR register

Instruction performs logical or arithmetical operation mostly between DR register and a memory location or a
constant. The address is an instruction parameter except instructions INR, DCR, BIN, BCD, ABS, INV, RR and
RL that are without an operand.

The instruction AD adds content of DR register to content of memory location defined by operand or to constant.
A result of this operation is stored in DR register. The instruction can work with operand type BYTE, WORD or
DWORD .

The instruction SU subtracts from content of DR register content of memory location defined by an operand or a
constant. The result of this operation is stored in DR register. The instruction can work with operand type BYTE
or WORD.

A Type redefining is described in Chapter.

instruction AD
 SU

operation AD Add byte, word or constant to DR
 SU Subtract byte, word or constant to DR

syntax AD (SU) adr
 AD (SU) [TYPE.]adr
 AD (SU) TYPE.(adr+n)
 AD (SU) CNTS.konst
 TYPE = BYTE. WORD. HIGH. DWRD.

instruction MULB
 DIVB

operation MULB multiplying DR register with an operand
 DIVB division of DR register with an operand

 PLC836 Basic Instruction Set

 3-19

The instruction MULB multiplies register DR with a content of memory location specified by its operand. The
result is stored in DR register. Instruction cans 8-bit (byte) operands and a result is type WORD. When the
operand is redefined via prefix "WORD." instruction works with 16-bit (word) operands and the result is 32-
bits (word) type in 32- bit extended DR register.

The instruction DIVB divides register DR (generally type word) by memory content specified by 8-bit (byte)
operand. The result (integer number) is stored in DR register. The result can have 8 bits as maximum.

When an operand type is redefined by prefix "WORD." instruction divides content of extended 32-bit DR
register by 16-bit (word) operand and the result is stored in DR register with length maximum 16 bit In this case
is necessary before using this instruction load 32 bit DR register.

If CPU04 processor with statement P386 (see next) is used multiplying and dividing four bytes (double word)
operands is allowed. For multiplying a redefinition of operand type to "DWRD". In this case the instruction
works with 32-bit (double-word) operands and the result is 64 bits (8 byte = QWORD). Lower 32 bits is stored
in extended 32-bit DR register. It is supposed than multiplying type DWRD shall be immediately followed by
division with redefining type "DWRD". The instruction divides content of 64 bit after multiplying by 32 bit
(double-word) operand and the result remains in extended 32 bit DR register.

Example:
Value of cell ALFA (BYTE) diminished by 23h multiply by value of cell BETA (BYTE) result should be stored
in cell GAMA (WORD).

 LOD ALFA ;reads ALFA to DR
 SU CNST.23H ;subtract 23h
 MULB BETA ;multiply with BETA (result 16 bits)
 STO GAMA ;write to GAMA

Example:
Add cells ALFA (WORD) and BETA (BYTE) result write to cell VYSLEDEK1, subtract constant 123h and
multiply by cell GAMA (WORD). Result 32 bits write to cell VYSLEDEK2 (DWORD).

 LOD ALFA ;read ALFA to DR
 AD BETA ;Add DR with BETA
 STO VYSLEDEK1 ;write to VYSLEDEK1
 SU CNST.123H ;subtract 123h
 MULB WORD.GAMA ; multiply with GAMA (result 32 bits)
 STO DWRD.VYSLEDEK2 ;write result 32 bits to VYSLEDEK2

Example:
A division result of 32 bit cell DELENEC (DWORD) and 16 bit cell DELITEL (WORD) write to cell PODIL
(WORD).

 LOD DWRD.DELENEC ;red dividend 32 bits to DR
 DIVB WORD.DELITEL ;dividing of 32 bits DR by factor 16 bits
 STO PODIL ;store result to PODIL 16 bits

PLC

 3-20

3.13 Non- operand Instructions for Working with DR
Register

Some non-operand instructions for operations with data register DR can work with an extended 32-bit DR
register (DWORD). These instructions are INR, DCR, INV, ABS, RR, RL, CONDR, and CONRD. In this
case is necessary modify non-operand instruction by parameter DWRD.

Instruction INR without an operand increments DR register by 1. If overflow occurs increment starts with zero.
Instruction DCR without an operand decrements register DR by 1.
Instruction INRBCD increments register DR by 1 in BCD code. A working range is 0.. 9999.
Instructions INR a DCR with parameter DWRD increment or decrement an extended 32 bit DR register.

Instruction BIN without an operand converts a number in BCD code stored in a register DR (maximally 16 bits)
to binary number. The result is stored in DR register.
Instruction BIN with parameter DWRD converts number in extended 32-bit DR register. A negative BCD
number has before the conversion set to 1 bit with log weight 31.

Instruction BCD without an operand converts number in binary form stored in DR register to BCD coded
number. The result is stored in DR register. A number in DR register before the conversion must not be greater
then 9999d = 270Fh.
Instruction BCD with parameter DWRD converts number in an extended 32-bit DR register. The number in DR
register must not be greater then 99999999d = 5F5E0FFh.

instruction INR
 DCR
 INRBCD

operation INR increment DR register
 DCR decrement DR register
 INRBCD increment DR register in BCD code

syntax INR (DCR)
 INR (DCR) [DWRD]
 INRBCD

instruction BIN
 BCD

operation BIN conversion BCD → BIN code
 BCD conversion BIN → BCD code

syntax BIN
 BCD
 BIN [DWRD]
 BCD [DWRD]

instruction RL
 RR

operation RL logical left shift of DR register
 RR logical right shift of DR register

syntax RL (RR) n
 RL (RR) [TYPE.]n
 RL (RR) [TYPE.]n[,DWRD]

 PLC836 Basic Instruction Set

 3-21

Instruction RL n provides a logical left shift of DR register content by "n" bits. An operand is a constant or a
value in a cell (8 bits as maximum) which assign a number of rotations.Tak je to rotace nebo posun ?
Instruction RR n provides a logical right shift of DR register content by "n" bits. An operand is a constant or a
value in a cell (8 bits as maximum) which assign a number of rotations.
Instructions can have a second parameter DWRD, which means that a shift of an extended 32-bit DR register
occurs

Instruction INV performs a negation of DR register. In modulo 2 implementation it is 2nd complement.
Instruction ABS returns an absolute value of DR register.
Instruction can have an optional parameter DWRD, which modifies the instructions in such a way that negation
or absolute value is provided with an extended 32 bit DR register.

Example:
Various operations:

 LOD ALFA ;reading ALFA (type according to declaration)
 INR ;increment DR (16 bits)
 ABS ;absolute value of DR (16 bits)
 RL POSUN ;left shift of DR by value stored in POSUN
 STO VYSLEDEK1 ;write to VYSLEDEK1
 INV ;2nd complement of DR (16 bits)
 RR CNST.3 ;right shift of DR by 3 bits
 STO VYSLEDEK2 ;write to VYSLEDEK2

 LOD DWRD.BETA ;reading 32 bits from BETA to DR
 ABS DWRD ;absolute value of DR 32 bits
 INR DWRD ;decrement DR 32 bits
 RR CNST.18,DWRD ; right shift by 18 bits of DR 32 bits
 STO DWRD.VYSLEDEK3 ;write to VYSLEDEK3 32 bits

3.14 Logical instruction with operands and DR register

This group provides comparison of DR register with memory content or constant with memory content or
constant and as a result sets RLO register.

instruction INV
 ABS

operation INV negation of DR register (2nd complement)
 ABS absolute value of DR register

syntax INV (ABS)
 INV (ABS) [DWRD]

PLC

 3-22

Instruction EQ is logical instruction and provides a comparison of DR register with a memory content assigned
via operand or with constant. If DR is equal to memory content or with a constant the RLO register is set to 1
otherwise is set to zero. The operands can be of type Byte, Word, constant or DWORD.

Instructions LT res. LE are logical instructions and provide a logical comparison of DR register with a memory
content assigned via operand or with a constant. If DR is smaller or equal then a memory content or constant the
RLO is set to 1 otherwise is set to zero

Instructions GT res. GE are logical instructions and provide a logical comparison of DR register with a memory
content assigned via operand or with a constant. If DR is greater or equal then a memory content or constant the
RLO is set to 1 otherwise is set to zero
.
Instruction EQ1 is introduced to maintain a compatibility with automaton NS915. A comparison is provided
only when value of RLO is 1, otherwise in RLO remains value 0. The instruction EQ1 can be used for
comparison of larger memory areas because instruction EQ1 can be in multiple mode. Two instructions and one
label can substitute instruction EQ1:

 JL0 OBSKOK
EQ BUNKA equal: EQ1 BUNKA
OBSKOK:

When a prefix "DWRD." is used before an operand then comparison of an extended 32-bit DR register with 32-
bit operand (DWORD) is performed.

A Type redefining is described in Chapter.

Example:
Jump to label MENSI, when a cell BUNKA1 is smaller then BUNKA2

 LOD BUNKA1 ;read BUNKA1 to DR
 LT BUNKA2 ;if DR < BUNKA2 then RLO=1, otherwise 0
 JL1 MENSI ;jump to MENSI if RLO=1

Example:
Compare value of cell NASTAVENI with cell BUNKA, when expression ALFA*NOT(BETA) is equal 1. Write
a result to GAMA:

 LDR ALFA ;read bit ALFA to RLO
LA -BETA ;logical AND of RLO with a negation of BETA

instructions EQ
 EQ1
 LT

 GT
 LE
 GE

operation EQ comparison of DR register with operand
 EQ1 conditional comparison of DR with operand, when RLO = 1
 LT DR is smaller then operand
 GT DR is greater then operand
 LE DR is smaller or equal then operand
 GE DR is greater or equal then operand

syntax EQ (EQ1,LT,GT,LE,GE) adr
 EQ (EQ1,LT,GT,LE,GE) [TYPE.]adr
 EQ (EQ1,LT,GT,LE,GE) TYPE.(adr+n)
 EQ (EQ1,LT,GT,LE,GE) CNTS.konst
 TYPE = BYTE. HIGH. WORD. DWRD.

 PLC836 Basic Instruction Set

 3-23

 LOD NASTAVENI ;read cell NASTAVENI to DR
 EQ1 BUNKA ;conditional comparison when RLO=1
 WR GAMA ;write RLO to GAMA

Example:
Compare two memory areas PAM1 and PAM2 each has a length 8 BYTE.

 LOD DWRD.PAM1 ;read 4 Bytes from PAM1 to DR 32 bits
 EQ DWRD.PAM2 ;compare DR 32 bits with 4 BYTE PAM2
 LOD DWRD.(PAM1+4) ;reads next 4 BYTE fromPAM1 to DR 32 bits
 EQ1 DWRD.(PAM2+4) ;perform next comparison only if
 ;first one got equality RLO=1
 JL1 ROVNO ; jump if not equal

Example:
Set bit AKCE to log 1 when a cell MATTL is equal to code ´W´

 LOD MATTL ;read cell MATTL to DR
 EQ CNST.'W' ;compare DR with a constant an setting of RLO
 FL1 1,AKCE ;if RLO=1 then set bit AKCE to log 1

Example:
If a difference counter DIFCIT_X (DWORD) exceeds value LIMIT jump to ERROR.

 CLI ;interrupt disabled (ASM86)
 LOD DWRD.DIFCIT_X ;read difference counter 32 bits to DR
 STI ;interrupt enabled (ASM86)
 ABS DWRD ;absolute value of 32 bits DR reg.
 GE DWRD.LIMIT ;if DR(32 bits) >= LIMIT (DWORD),then
 ;RLO=1, otherwise RLO=0
 JL1 ERROR ;jump to error

PLC

 3-24

3.15 Conversion and Moving Register and Memory

Instruction CONDR performs a conversion of register DR to bit register RLO. If register DR is zero, the RLO
register is set to 0. If register DR is nonzero the RLO register is set to 1. The DR register remains unaffected.

Instruction CONRD performs a conversion of a bit register RLO into data register DR . If register RLO is zero
then DR register is set to 0. If register RLO is 1 then DR register is set to value FFFFh. The RLO register
remains unaffected. Instruction CONRD is the end- instruction for logical expression.
If a parameter DWRD is used the conversion is performed with an extended 32-bit DR register.

Instruction MV performs a move of memory area. Parameter "source" is a source address - from where a move
starts, parameter "destination" is the address of destination - to where the memory area shall be moved and
parameter "number" is a number of bytes to be moved.

Instruction CLEAR performs a memory clear. Parameter "start" is a starting address of memory area to be
cleared and parameter "end" is the end address of this memory area. The instruction in systems family CNC8x9
clears memory of global variables and memory of local variables as well. An appropriate area is assigned
according to variable address in instruction parameter.

Instruction “CLEAR GLOBAL, ALL“ clears a global data including initial variable mechanism and timers.

instruction CONDR
 CONRD

operation CONDR conversion DR → RLO
 CONRD conversion RLO → DR

syntax CONDR (CONRD)
 CONDR (CONRD) [DWRD]

instruction MV

operation MV memory move

syntax MV source, destination, number

instruction CLEAR

operation CLEAR memory clear

syntax CLEAR start, end
 CLEAR GLOBAL, ALL
 CLEAR INTERNAL, ALL

 PLC836 Basic Instruction Set

 3-25

Then after this instruction a new initialization of all mechanisms must occur. The instruction is used for example
in a module PIS_CLEAR (MODULE_CLEAR), to ensure that clearing (start and stop) of PLC program was
equivalent with a run of module PIS_INIT (MODULE_INIT), which runs when a machine is switched ON only.

Instruction “CLEAR INTERNAL, ALL“ clears all local data defined by PLC programmer including
“automatic” variables defined in development of a PLC836 language. Instruction is used for example in a
module PIS_CLEAR (MODULE_CLEAR).

3.16 Procedures

Defining and calling of the procedures is valid only for family CNC8x9 – DUAL. In all files of PLC program
can be defined procedures (subroutines) and also in all files can be all procedure calls defined in other files.

 operation PROC_BEGIN beginning of procedure
 PROC_END end of procedure
 PROC_CALL calling of procedure

 Syntax PROC_BEGIN name
 PROC_END name
 PROC_CALL name

Statements PROC_BEGIN and PROC_END provide definition of a procedure, which have a name of procedure
as parameter. The procedure location during its definition can be at any place in module PROVOZ_VYSTUP
(MODULE_MAIN). Execution of instruction skip memory area, which is assigned by procedure definition.
The procedure is called by statement PROC_CALL with appropriate parameter (the name of procedure). When
procedure ends the program continues to execute instruction placed immediately next to procedure calling.

The event procedures:

In the PLC836 language some procedure names are exclusively destined for a special purpose and are triggered
automatically when a particular event occurs. Those names are as follows:

_ON_ESET The procedure is automatically called in case of PLC error. A location of the procedure can

be at any file which content a PLC program. The TECHNOL compiler investigates the
presence of such a procedure and if exists triggers it via statement z rozvoje instrukce
ESET. (see Chapter „Error Codes and Messages of PLC program“.

_ON_MSET The procedure is automatically called when a program’s information message occurs. A
location of the procedure can be at any file which content a PLC program. The TECHNOL
compiler investigates the presence of such a procedure and if exists triggers it via statement
z rozvoje instrukce MSET. (see Chapter „Error Codes and Messages of PLC program“).

_ON_REK The procedure is automatically called if changing of machine constants occurs. A location of
the procedure can be at any file which content a PLC program. The TECHNOL compiler
investigates the presence of such a procedure and if exists triggers it after new

statement PROC_BEGIN
 PROC_END
 PROC_CALL

PLC

 3-26

reconfiguration of the system. At this place can be a new BCD to binary conversions for
machine constants used in PLC program.

3.17 Auxiliary Statements

 The PLC836 language works with auxiliary statements, which take place during PLC program compilation
only. All statements described bellow are non-operand type.

Statement SYMBOLTAB causes shortening of symbol table during PLC program compilation. It is
recommended to use this statement only when compiler reports an overflow of the symbol table. When during
the PLC program compilation products of company BORLAND are used the SYMBOLTAB is without any
effect.

Instruction INTERSTACK uses its own (internal] processor stack during evaluation of logical expression.
Using instruction INTERSTACK speeds up a PLC program execution but problems may occur with stack
unequability even if compiler TECHNOL checks this enequability. For instance setting of BREAK-POINTER in
the program area is inhibited.

Instruction CHECK checks stack equability. The stack equability is checked always at the end of appropriate
module. During program debugging it is possible to use an instruction CHECK, which checks stack equability at
assigned place and thus helps to localize program errors.

Instruction P386 modifies instructions of PLC836 language to fit in "assembler 386" for 80486DX processor
used in CPU04 processor card. Data operation in double word notation use for inner notation register ECX
instead of registers BP, CX. This instruction provides all actions, which are necessary for transition to processor
CPU04. Instruction P386 must precede instruction DATA (see chapter Structure of PLC program). In systems
type DUAL may not be used.

Instruction CPU04 provides all actions which are necessary for transition to card CPU04 (with processor
80486DX), but do not modify instructions of PLC 386 language. This instruction is may be used in case that
PLC program has a lot assembler 86 instructions. (e.g. work with double word notation in registers BP, CX).
Instruction P386 must precede instruction DATA (see chapter Structure of PLC program). In systems type
DUAL may not be used.

Instruction VERINSTRU modifies the instructions according to defined version. A parameter of this instruction
contains a name of instruction to be modified. To the instruction’s name is via character "underline" ('_')
connected a version type. In TECHNOL compiler staring with version 2.3 are valid following combinations:

 FL_V1 FL1_V1 WR_V1

All described modifications give as a possibility to use in parameters of instructions FL, FL1 and WR more bit
operands which may not be located in the same byte The operands are not bracketed in a “ less than” and “
greater then” signs but are separated by commas. In the systems type DUAL is this modification performed
automatically.

Statement SYMBOLTAB
 INTERSTACK
 CHECK
 P386
 CPU04
 VERINSTRU

 PLC836 Basic Instruction Set

 3-27

Starting with software version 4.036 is possible to use a modification of all instructions that work with analog
inputs and with measurement actions in dependence of coordinate unit type. In systems type DUAL may not
be used.

 SU02 SU04

Example:

PAM1: DFM , , ,ALFA,BETA, , ,
PAM2: DFM ,GAMA, , , , , ,
PAM3: DFM , , , , ,DELTA, ,

 VERINSTRU FL_V1, FL1_V1, WR_V1

 FL 1, ALFA, GAMA, DELTA
 WR GAMA, DELTA
 FL1 0, DELTA, BETA

PLC

 3-28

